Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8784, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627500

RESUMO

Eustachian tube balloon dilatation (ETBD) has shown promising results in the treatment of ET dysfunction (ETD); however, recurrent symptoms after ETBD frequently occur in patients with refractory ETD. The excessive pressure of balloon catheter during ETBD may induce the tissue hyperplasia and fibrotic changes around the injured mucosa. Sirolimus (SRL), an antiproliferative agent, inhibits tissue proliferation. An SRL-coated balloon catheter was fabricated using an ultrasonic spray coating technique with a coating solution composed of SRL, purified shellac, and vitamin E. This study aimed to investigate effectiveness of ETBD with a SRL-coated balloon catheter to prevent tissue proliferation in the rat ET after ETBD. In 21 Sprague-Dawley rats, the left ET was randomly divided into the control (drug-free ETBD; n = 9) and the SRL (n = 9) groups. All rats were sacrificed for histological examination immediately after and at 1 and 4 weeks after ETBD. Three rats were used to represent the normal ET. The SRL-coated ETBD significantly suppressed tissue proliferation caused by mechanical injuries compared with the control group. ETBD with SRL-coated balloon catheter was effective and safe to maintain ET luminal patency without tissue proliferation at the site of mechanical injuries for 4 weeks in a rat ET model.


Assuntos
Otopatias , Tuba Auditiva , Humanos , Ratos , Animais , Dilatação/métodos , Ratos Sprague-Dawley , Cateterismo/métodos , Otopatias/terapia , Otopatias/diagnóstico , Resultado do Tratamento
2.
Gastrointest Endosc ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583543

RESUMO

BACKGROUND AND AIMS: Endobiliary radiofrequency ablation (RFA) is an emerging endoscopic palliative adjunctive therapy used for the local treatment of unresectable malignant biliary obstruction (MBO). However, irregular ablation ranges caused by insufficient electrode-to-bile duct contact pose a significant obstacle. The aim was to investigate the feasibility of a self-expandable stent (SES)-based electrode with a customized RFA generator in the porcine liver and common bile duct (CBD). METHODS: A SES-RFA system with polarity-switching was developed to perform endobiliary RFA. The ablation ranges of 20 ablation protocols were evaluated to validate the feasibility of the newly developed RFA system in the porcine liver. Nine of the 20 ablation protocols were selected for evaluation in the porcine CBD with cholangiography, endoscopy, and histological and immunohistochemical analysis. RESULTS: The SES-RFA system with polarity-switching was successfully constructed and demonstrated high accuracy and reproducibility. The ablation area was clearly identified between the two SESs. The ablation ranges and degree of mucosal damage including TUNEL- and HSP70-positive depositions increased proportionally with ablation protocols in the porcine liver and CBD (all P < .05). Ablation length and depth linearly increased with ablation protocols from 8.74 ± 0.25 to 31.25 ± 0.67 mm and 1.61 ± 0.09 to 11.94 ± 0.44 mm, respectively. CONCLUSIONS: The SES-RFA system with polarity-switching between electrodes provided an even circumferential area of ablation and enhanced ablation depth between the electrodes. This novel endobiliary RFA system is a promising modality for local ablation in patients with unresectable MBO.

3.
Int J Biol Sci ; 20(5): 1688-1704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481807

RESUMO

Background: Melanocortin 1 receptor (MC1R), a receptor of α-melanocyte-stimulating hormone (α-MSH), is exclusively present in melanocytes where α-MSH/MC1R stimulate melanin pigmentation through microphthalmia-associated transcription factor M (MITF-M). Toll-like receptor 4 (TLR4), a receptor of endotoxin lipopolysaccharide (LPS), is distributed in immune and other cell types including melanocytes where LPS/TLR4 activate transcriptional activity of nuclear factor (NF)-κB to express cytokines in innate immunity. LPS/TLR4 also up-regulate MITF-M-target melanogenic genes in melanocytes. Here, we propose a molecular target of antimelanogenic activity through elucidating inhibitory mechanism on α-MSH-induced melanogenic programs by benzimidazole-2-butanol (BI2B), an inhibitor of LPS/TLR4-activated transcriptional activity of NF-κB. Methods: Ultraviolet B (UV-B)-irradiated skins of HRM-2 hairless mice and α-MSH-activated melanocyte cultures were employed to examine melanogenic programs. Results: Topical treatment with BI2B ameliorated UV-B-irradiated skin hyperpigmentation in mice. BI2B suppressed the protein or mRNA levels of melanogenic markers, such as tyrosinase (TYR), MITF-M and proopiomelanocortin (POMC), in UV-B-exposed and pigmented skin tissues. Moreover, BI2B inhibited melanin pigmentation in UV-B-irradiated co-cultures of keratinocyte and melanocyte cells and that in α-MSH-activated melanocyte cultures. Mechanistically, BI2B inhibited the activation of cAMP response element-binding protein (CREB) in α-MSH-induced melanogenic programs and suppressed the expression of MITF-M at the promoter level. As a molecular target, BI2B primarily inhibited mitogen-activated protein kinase (MAPK) kinase 3 (MKK3)-catalyzed kinase activity on p38MAPK. Subsequently, BI2B interrupted downstream pathway of p38MAPK-mitogen and stress-activated protein kinase-1 (MSK1)-CREB-MITF-M, and suppressed MITF-M-target melanogenic genes, encoding enzymes TYR, TYR-related protein-1 (TRP-1) and dopachrome tautomerase (DCT) in melanin biosynthesis, and encoding proteins PMEL17 and Rab27A in the transfer of pigmented melanosomes to the overlaying keratinocytes in the skin. Conclusion: Targeting the MKK3-p38MAPK-MSK1-CREB-MITF-M pathway was suggested as a rationale to inhibit UV-B- or α-MSH-induced facultative melanogenesis and as a strategy to prevent acquired pigmentary disorders in the skin.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Hiperpigmentação , Animais , Camundongos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Melaninas/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Lipopolissacarídeos/toxicidade , Melanócitos/metabolismo , Hiperpigmentação/tratamento farmacológico , Hiperpigmentação/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Linhagem Celular Tumoral
4.
Cell Signal ; 115: 111029, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38163576

RESUMO

Sirtuin 3 (SIRT3) regulates mitochondrial function as a mitochondrial deacetylase during oxidative stress. However, the specific regulatory mechanism and function of SIRT3 in radioresistant cancer cells are unclear. In this study, we aim to investigate how SIRT3 determines the susceptibility to glucose deprivation and its regulation in p53-based radioresistant head and neck cancer cells. We observed mitochondrial function using two established isogenic radioresistant subclones (HN3R-A [p53 null] and HN3R-B [p53 R282W]) with intratumoral p53 heterogeneity. Cell counting analysis was performed to evaluate cell proliferation and cell death. The correlation between the regulation of SIRT3 and enhancer of zeste homolog 2 (EZH2) was confirmed by immunoblotting and chromatin immunoprecipitation assay. p53-deficient radioresistant cells (HN3R-A) expression reduced SIRT3 levels and increased sensitivity to glucose deprivation due to mitochondrial dysfunction compared to other cells. In these cells, activation of SIRT3 significantly prevented glucose deprivation-induced cell death, whereas the loss of SIRT3 increased the susceptibility to glucose deficiency. We discovered that radiation-induced EZH2 directly binds to the SIRT3 promoter and represses the expression. Conversely, inhibiting EZH2 increased the expression of SIRT3 through epigenetic changes. Our findings indicate that p53-deficient radioresistant cells with enhanced EZH2 exhibit increased sensitivity to glucose deprivation due to SIRT3 suppression. The regulation of SIRT3 by EZH2 plays a critical role in determining the cell response to glucose deficiency in radioresistant cancer cells. Therefore, EZH2-dependent SIRT3 could be used as a predictive biomarker to select treatment options for patients with radiation-resistance.


Assuntos
Neoplasias de Cabeça e Pescoço , Sirtuína 3 , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Sirtuína 3/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Neoplasias de Cabeça e Pescoço/radioterapia , Estresse Oxidativo
5.
Allergy Asthma Clin Immunol ; 20(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167134

RESUMO

BACKGROUND: Allergic asthma and rhinitis (AR) are closely linked, with a significant proportion of AR patients developing asthma. Identification of the early signs of comorbidity of AR and asthma can enable prompt treatment and prevent asthma progression. OBJECTIVES AND METHODS: This study investigated the role of interleukin-1ß (IL-1ß), a pro-inflammatory cytokine, and inducible nitric oxide synthase (iNOS) in the comorbidity of AR and asthma and lung function in Korean children with perennial AR (PAR). A cohort of 240 subjects (6 to 10 years old) with PAR (PAR alone: 113 children, PAR and asthma: 127 children) was analyzed for various biomarkers, including IL-1ß, iNOS, and epithelial-mesenchymal transition (EMT) markers in serum. The blood levels of eosinophils and immunoglobulin E (IgE) were examined. IL-1ß, CCL-24, E-cadherin, and vimentin were measured by enzyme-linked immunosorbent assay (ELISA). Epithelial iNOS was measured by the NOS kit. RESULTS: Elevated levels of IL-1ß, iNOS, and vimentin in the serum were identified as significant indicators of the likelihood of comorbidity of PAR and asthma in children. Furthermore, higher concentrations of IL-1ß, iNOS, and vimentin have been linked to reduced lung function in PAR children. Notably, IL-1ß expression shows a relationship with the levels of E-cadherin, vimentin, and CCL-24. However, no correlation was found between IL-1ß and iNOS expressions. CONCLUSIONS: This study suggests that IL-1ß and iNOS can be biomarkers in the progression of PAR and asthma and decreased lung function, suggesting potential targets for early intervention and treatment.

6.
Int J Biol Sci ; 20(1): 312-330, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164184

RESUMO

Background: The cAMP response element-binding protein (CREB) and CREB-regulated transcription coactivators (CRTCs) cooperate in the transcriptional activation of microphthalmia-associated transcription factor subtype M (MITF-M) that is a master regulator in the biogenesis, pigmentation and transfer of melanosomes at epidermal melanocytes. Here, we propose the targeting of phosphorylation circuits on CREB and CRTCs in the expression of MITF-M as the rationale to prevent skin hyperpigmentation by elucidating the inhibitory activity and mechanism of yakuchinone A (Yaku A) on facultative melanogenesis. Methods: We employed human epidermal melanocyte cell, mouse skin, and mouse melanoma cell, and applied Western blotting, reverse transcription-polymerase chain reaction, immunoprecipitation and confocal microscopy to conduct this study. Results: This study suggested that α-melanocyte stimulating hormone (α-MSH)-induced melanogenic programs could switch on the axis of protein kinase A-salt inducible kinases (PKA-SIKs) rather than that of PKA-AMP activated protein kinase (PKA-AMPK) during the dephosphorylation of CRTCs in the expression of MITF-M. SIK inhibitors rather than AMPK inhibitors stimulated melanin production in melanocyte cultures in the absence of extracellular melanogenic stimuli, wherein SIK inhibitors increased the dephosphorylation of CRTCs but bypassed the phosphorylation of CREB for the expression of MITF-M. Treatment with Yaku A prevented ultraviolet B (UV-B)-irradiated skin hyperpigmentation in mice and inhibited melanin production in α-MSH- or SIK inhibitor-activated melanocyte cultures. Mechanistically, Yaku A suppressed the expression of MITF-M via dually targeting the i) cAMP-dependent dissociation of PKA holoenzyme at the upstream from PKA-catalyzed phosphorylation of CREB coupled with PKA-SIKs axis-mediated dephosphorylation of CRTCs in α-MSH-induced melanogenic programs, and ii) nuclear import of CRTCs after SIK inhibitor-induced dephosphorylation of CRTCs. Conclusions: Taken together, the targeting phosphorylation circuits on CREB and CRTCs in the expression of MITF-M could be a suitable strategy to prevent pigmentary disorders in the skin.


Assuntos
Hiperpigmentação , Melaninas , Humanos , Animais , Camundongos , Melaninas/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fosforilação , alfa-MSH/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Melanócitos/metabolismo , Hiperpigmentação/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Linhagem Celular Tumoral
7.
ACS Biomater Sci Eng ; 10(3): 1869-1879, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38291563

RESUMO

Localized photodynamic therapy (PDT) uses a polymeric-photosensitizer (PS)-embedded, covered self-expandable metallic stent (SEMS). PDT is minimally invasive and a noteworthy potential alternative for treating esophageal strictures, where surgery is not a viable option. However, preclinical evidence is insufficient, and optimized irradiation energy dose ranges for localized PDT are unclear. Herein, we validated the irradiation energy doses of the SEMS (embedded in a PS using chlorin e6 [Ce6] and covered in silicone) and PDT-induced tissue changes in a rat esophagus. Cytotoxicity and phototoxicity in the Ce6-embedded SEMS piece with laser irradiation were significantly higher than that of the silicone-covered SEMS with or without laser and the Ce6-embedded silicone-covered SEMS without laser groups (all p < 0.001). Moreover, surface morphology, atomic changes, and homogeneous coverage of the Ce6-embedded silicone-covered membrane were confirmed. The ablation range of the porcine liver was proportionally increased with the irradiation dose (all p < 0.001). The ablation region was identified at different irradiation energy doses of 50, 100, 200, and 400 J/cm2. The in vivo study in the rat esophagus comprised a control group and 100, 200, and 400 J/cm2 energy-dose groups. Finally, histology and immunohistochemistry (TUNEL and Ki67) confirmed that the optimized Ce6-embedded silicone-covered SEMS with selected irradiation energy doses (200 and 400 J/cm2) effectively damaged the esophageal tissue without ductal perforation. The polymeric PS-embedded silicone-covered SEMS can be easily placed via a minimally invasive approach and represents a promising new approach for the palliative treatment of malignant esophageal strictures.


Assuntos
Clorofilídeos , Estenose Esofágica , Fotoquimioterapia , Porfirinas , Stents Metálicos Autoexpansíveis , Humanos , Ratos , Suínos , Animais , Estenose Esofágica/tratamento farmacológico , Estenose Esofágica/cirurgia , Cuidados Paliativos , Silicones , Constrição Patológica/tratamento farmacológico , Porfirinas/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Polímeros/uso terapêutico
8.
PLoS One ; 18(9): e0291780, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37733709

RESUMO

The most common cause of sensorineural hearing loss is damage of auditory hair cells. Tumor necrosis factor-alpha (TNF-α) is closely associated with sensorineural hearing loss. The present study examined the preconditioning effect of dexamethasone (DEX) on TNF-α-induced ototoxicity in mouse auditory hair cells (HEI-OC1) and cochlear explants. Treatment of HEI-OC1 with 10 ng/ml TNF-α for 24 h decreased cell viability, increased the accumulation of reactive oxygen species (ROS), and induced caspase-mediated apoptotic signaling pathways. Pretreatment with 10 nM DEX for 6 h before TNF-α exposure restored cell viability, decreased ROS accumulation, and attenuated apoptotic signaling activation induced by TNF-α. Incubation of cochlear explants with 20 ng/ml TNF-α for 24 h resulted in significant loss of both inner hair cells (IHCs) and outer hair cells (OHCs) and an increase in apoptotic activation accessed by annexin V staining. The cochlear explants pre-incubated with 10 nM DEX attenuated TNF-α ototoxicity in both IHCs and OHCs and apoptotic cell death. These results indicated that DEX plays a protective role in ototoxicity induced by TNF-α through attenuation of caspase-dependent apoptosis signaling pathway and ROS accumulation.


Assuntos
Perda Auditiva Neurossensorial , Ototoxicidade , Animais , Camundongos , Fator de Necrose Tumoral alfa , Espécies Reativas de Oxigênio , Células Ciliadas Auditivas Externas , Dexametasona/farmacologia
9.
Front Bioeng Biotechnol ; 11: 1244569, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744261

RESUMO

Background: In-stent restenosis caused by tissue hyperplasia and tumor growth through the wire meshes of an implanted self-expandable metallic stent (SEMS) remains an unresolved obstacle. This study aimed to investigate the safety and efficacy of SEMS-mediated radiofrequency ablation (RFA) for treating stent-induced tissue hyperplasia in a rat gastric outlet obstruction model. Methods: The ablation zone was investigated using extracted porcine liver according to the ablation time. The optimal RFA parameters were evaluated in the dissected rat gastric outlet. We allocated 40 male rats to four groups of 10 rats as follows: group A, SEMS placement only; group B, SEMS-mediated RFA at 4 weeks; group C, SEMS-mediated RFA at 4 weeks and housed until 8 weeks; and group D, SEMS-mediated RFA at 4 and 8 weeks. Endoscopy and fluoroscopy for in vivo imaging and histological and immunohistochemical analysis were performed to compare experimental groups. Results: Stent placement and SEMS-mediated RFA with an optimized RFA parameter were technically successful in all groups. Granulation tissue formation-related variables were significantly higher in group A than in groups B-D (all p < 0.05). Endoscopic and histological findings confirmed that the degrees of stent-induced tissue hyperplasia in group D were significantly lower than in groups B and C (all p < 0.05). Hsp70 and TUNEL expressions were significantly higher in groups B-D than in group A (all p < 0.001). Conclusion: The implanted SEMS-mediated RFA successfully managed stent-induced tissue hyperplasia, and repeated or periodic RFA seems to be more effective in treating in-stent restenosis in a rat gastric outlet obstruction model.

10.
ACS Appl Mater Interfaces ; 15(29): 34475-34487, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37452740

RESUMO

The application of irreversible electroporation (IRE) to endoluminal organs is being investigated; however, the current preclinical evidence and optimized electrodes are insufficient for clinical translation. Here, a novel self-expandable electrode (SE) made of chemically polished nickel-titanium (Ni-Ti) alloy wire for endoluminal IRE is developed in this study. Chemically polished heat-treated Ni-Ti alloy wires demonstrate increased electrical conductivity, reduced carbon and oxygen levels, and good mechanical and self-expanding properties. Bipolar IRE using chemically polished Ni-Ti wires successfully induces cancer cell death. IRE-treated potato tissue shows irreversibly and reversibly electroporated areas containing dead cells in an electrical strength-dependent manner. In vivo study using an optimized electric field strength demonstrates that endobiliary IRE using the SE evenly induces well-distributed mucosal injuries in the common bile duct (CBD) with the overexpression of the TUNEL, HSP70, and inflammatory cells without ductal perforation or stricture formation. This study demonstrates the basic concept of the endobiliary IRE procedure, which is technically feasible and safe in a porcine CBD as a novel therapeutic strategy for malignant biliary obstruction. The SE is a promising electrical energy delivery platform for effectively treating endoluminal organs.


Assuntos
Neoplasias , Titânio , Suínos , Animais , Titânio/química , Níquel/química , Eletroporação/métodos , Eletrodos , Ligas
11.
Sci Rep ; 13(1): 8601, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237009

RESUMO

This study aimed to investigate the efficacy of a closed-cell self-expandable metallic stent (SEMS) with or without expanded-polytetrafluoroethylene (e-PTFE)-covering membrane in a porcine iliac artery model. Twelve Yorkshire domestic pigs were divided into a bare closed-cell SEMS (B-SEMS) group (n = 6) and covered closed-cell SEMS (C-SEMS) group (n = 6). Both closed-cell SEMSs were placed in the right or left iliac artery. Thrombogenicity score in the C-SEMS group was significantly higher than that in the B-SEMS group (p = 0.004) after 4 weeks. Angiographic findings of mean luminal diameters at 4 weeks follow-up did not differ significantly between B-SEMS and C-SEMS groups. Neointimal hyperplasia thickness as well as degree of inflammatory cell infiltration and collagen deposition in the C-SEMS group was significantly greater than that in the B-SEMS group (p < 0.001). Closed-cell SEMSs successfully maintained patency for 4 weeks without stent-related complications in the porcine iliac artery. Although mild thrombus with neointimal hyperplasia was observed in the C-SEMS group, subsequent occlusion, and in-stent stenosis did not occur in any of the pigs until the end of the study. Closed-cell SEMS with or without the e-PTFE covering membrane is effective and safe for the porcine iliac artery.


Assuntos
Doença Arterial Periférica , Stents Metálicos Autoexpansíveis , Suínos , Animais , Artéria Ilíaca/cirurgia , Hiperplasia , Stents , Politetrafluoretileno , Resultado do Tratamento , Estudos Retrospectivos
12.
Biomater Sci ; 11(13): 4652-4663, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37218418

RESUMO

Clostridium novyi-NT (C. novyi-NT) is an anaerobic bacterium that can be used for targeted cancer therapy because it germinates selectively in the hypoxic regions of tumor tissues. However, systemic administration of C. novyi-NT spores cannot effectively treat tumors because of the limited intratumoral delivery of active spores. In this study, we demonstrated that multifunctional porous microspheres (MPMs) containing C. novyi-NT spores have the potential for image-guided local tumor therapy. The MPMs can be repositioned under an external magnetic field, enabling precise tumor targeting and retention. Polylactic acid-based MPMs were prepared using the oil-in-water emulsion technique and then coated with a cationic polyethyleneimine polymer prior to loading with negatively charged C. novyi-NT spores. The C. novyi-NT spores delivered by MPMs were released and germinated in a simulated tumor microenvironment, effectively secreting proteins cytotoxic to tumor cells. In addition, the germinated C. novyi-NT induced immunogenic death of the tumor cells and M1 polarization of macrophages. These results indicate that MPMs encapsulated with C. novyi-NT spores have great potential for image-guided cancer immunotherapy.


Assuntos
Neoplasias , Esporos Bacterianos , Humanos , Microesferas , Composição de Bases , Porosidade , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Neoplasias/patologia , Imunoterapia , Microambiente Tumoral
13.
PLoS One ; 18(4): e0284584, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37098019

RESUMO

Absorbable magnesium (Mg) stents have an attractive biocompatibility and rapid degradation rate, but their degradable behavior and efficacy in the Eustachian tube (ET) have not yet been investigated. In this study, the degradable behavior of the Mg stent in artificial nasal mucus was evaluated. The Mg stents in the porcine ET model were also investigated to evaluate their safety and efficacy. Four Mg stents were placed into the four ETs of two pigs. The mass loss rate of the Mg stents gradually decreased over time. The decrease rates were 30.96% at one week, 49.00% at two weeks, and 71.80% at four weeks. On the basis of histological findings, the thickness of submucosal tissue hyperplasia and the degree of inflammatory cell infiltration significantly decreased at four weeks compared with two weeks. Biodegradation of the Mg stent occurred before tissue proliferative reactions, and the ET patency was successfully maintained without stent-induced tissue hyperplasia at four weeks. The Mg stent that biodegrades rapidly seems to be effective and safe in porcine ET. Further investigation is required to verify the optimal stent shape and indwell period in the ET.


Assuntos
Tuba Auditiva , Magnésio , Animais , Suínos , Tuba Auditiva/cirurgia , Hiperplasia , Stents , Implantes Absorvíveis
14.
Pharmaceutics ; 15(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36840032

RESUMO

The kinase activity of inhibitory κB kinase ß (IKKß) acts as a signal transducer in the activating pathway of nuclear factor-κB (NF-κB), a master regulator of inflammation and cell death in the development of numerous hepatocellular injuries. However, the importance of IKKß activity on acetaminophen (APAP)-induced hepatotoxicity remains to be defined. Here, a derivative of caffeic acid benzylamide (CABA) inhibited the kinase activity of IKKß, as did IMD-0354 and sulfasalazine which show therapeutic efficacy against inflammatory diseases through a common mechanism: inhibiting IKKß activity. To understand the importance of IKKß activity in sterile inflammation during hepatotoxicity, C57BL/6 mice were treated with CABA, IMD-0354, or sulfasalazine after APAP overdose. These small-molecule inhibitors of IKKß activity protected the APAP-challenged mice from necrotic injury around the centrilobular zone in the liver, and rescued the mice from hepatic damage-associated lethality. From a molecular perspective, IKKß inhibitors directly interrupted sterile inflammation in the Kupffer cells of APAP-challenged mice, such as damage-associated molecular pattern (DAMP)-induced activation of NF-κB activity via IKKß, and NF-κB-regulated expression of cytokines and chemokines. However, CABA did not affect the upstream pathogenic events, including oxidative stress with glutathione depletion in hepatocytes after APAP overdose. N-acetyl cysteine (NAC), the only FDA-approved antidote against APAP overdose, replenishes cellular levels of glutathione, but its limited efficacy is concerning in late-presenting patients who have already undergone oxidative stress in the liver. Taken together, we propose a novel hypothesis that chemical inhibition of IKKß activity in sterile inflammation could mitigate APAP-induced hepatotoxicity in mice, and have the potential to complement NAC treatment in APAP overdoses.

15.
World J Mens Health ; 41(3): 649-658, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36593705

RESUMO

PURPOSE: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent because of its tumor selectivity and its ability to induce apoptosis in cancer cells while sparing most normal cells. We evaluated whether docetaxel enhances TRAIL-mediated apoptosis in prostate cancer (PCa) cells and its mechanism. MATERIALS AND METHODS: LNCap-LN3, PC3, and DU 145 PCa cell lines were used to investigate the effects of TRAIL with docetaxel treatment (dosages, 1, 3, 5, and 10 nmol). To evaluate the mechanism, death receptor 4 (DR4), DR5, enhancer of zeste homolog 2 (EZH2) and E2F1 levels were assessed in PCa cells. RESULTS: Hormone-sensitive LNCap-LN3 showed apoptosis in proportion to the concentration of docetaxel. Castration-resistant PC3 and DU 145 showed no change irrespective of the docetaxel concentration. However, combinations of docetaxel (2 nM) and TRAIL (100 ng/mL) had a significant effect on apoptosis of DU 145 cells. In DU 145 cells, docetaxel reduced EZH2 and elevated expression of DR4. The decrease of EZH2 by docetaxel was correlated with the E2F1 level, which was considered as the promoter of EZH2. DZNep reduced EZH2 and elevated DR4 in all PCa cells. Additionally, DZNep-enhanced TRAIL mediated reduction of PCa cell viability. CONCLUSIONS: Docetaxel and the EZH2 inhibitor reduced EZH2 and elevated expression of DR4 in all PCa cell lines. Docetaxel-enhanced TRAIL mediated apoptosis in PCa via elevation of DR4 through epigenetic regulation by EZH2. To improve the efficacy of TRAIL for PCa treatment, adding docetaxel or EZH2 inhibitors to TRAIL may be promising.

16.
Surgery ; 173(4): 1008-1014, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36577598

RESUMO

BACKGROUND: The relatively low aqueous solubility of EW-7197 that was administered orally may have affected the desired concentration in the systemic circulation for treating peritoneal adhesion. This experimental study aimed to compare the efficacy of different routes of administering EW-7197 (2-fluoro-N-[(5-[6-methylpyridin-2-yl]-4-[(1,2,4)triazolo(1,5-a)pyridin-6-yl]-1H-imidazol-2-yl)methyl]aniline) and EW-7197·hydrobromide (HBr), with improved aqueous solubility, for inhibiting peritoneal adhesion in a rat model. METHODS: After peritoneal adhesion induction, 30 male Sprague-Dawley rats were randomly divided into 5 groups with 6 rats in each: group A, sham control; group B, orally administered 25 mg/kg of EW-7197·HBr for 7 days; group C, locally administered 25 mg/kg of EW-7197·HBr; group D, orally administered 20 mg/kg of EW-7197 for 7 days; and group E, locally administered 20 mg/kg of EW-7197. Gross examination, histologic staining (hematoxylin and eosin and Masson's trichrome), and immunohistochemical analyses (Ki-67 and α-smooth muscle actin marker [α-SMA]) were performed to evaluate the efficacy of both drugs. RESULTS: All procedures were technically successful. All treatment groups, except for group C, showed significantly reduced incidence, quality, tenacity, fibrosis, and collagen deposition scores and lowered expressions of Ki-67- and α-SMA-positive cells compared with group A. When comparing between groups, all scores were significantly lower in group B than in group C (all P < .001), whereas no significant difference was noted in any of the scores between groups D and E and groups B and E (all P > .05). CONCLUSION: Orally administering EW-7197·HBr and both orally and locally administering EW-7197 significantly prevented peritoneal adhesion formation, and orally administering EW-7197·HBr was the most effective overall.


Assuntos
Compostos de Anilina , Doenças Peritoneais , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Antígeno Ki-67 , Fibrose , Compostos de Anilina/farmacologia
17.
Front Bioeng Biotechnol ; 10: 934858, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466325

RESUMO

Background: Irreversible electroporation (IRE) has been investigated in the alimentary tract; however, the lack of dedicated electrodes and insufficient tissue responses made its application limited. The aim of this study was to investigate the efficacy and safety of image-guided stent-directed IRE in the rat esophagus. Methods: The bipolar self-expandable electrode (SE) was developed using the braiding technique. A finite element analysis was performed to validate optimal electrical field strength for the rat esophagus. A total of 40 out of 50 rats received stent-directed IRE and were sacrificed at 10 h, 3 days, 7 days, and 28 days of 10 each. The remaining ten rats underwent a sham procedure. The outcomes of stent-directed IRE were assessed by esophagography and histological responses. Results: Stent-directed IRE was technically successful in all rats with mild muscle contraction. The heart rate dropped immediately and gradually recovered at 180 s. TUNEL and caspase-3 with submucosal thickness significantly increased at 10 h and Day 3 compared with those of the sham control (all p < 0.001). The thickness of epithelial layers with collagen deposition significantly decreased at 10 h and Day 3 (all p < 0.001), however, increased at Day 7 compared with that of the sham control (all p < 0.05). The Ki67-positive deposition significantly increased at Day 3 and 7 compared with that of the sham control (all p < 0.001). All variables were similar to those of the sham control at Day 28. Conclusion: Image-guided stent-directed IRE was effective and safe in the rat esophagus. It seems to have effectively and evenly induced cell death and gradually recovered with cellular regeneration.

18.
Sci Rep ; 12(1): 22336, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572706

RESUMO

As a non-thermal ablation method, irreversible electroporation (IRE) has been widely investigated in the treatment of prostate cancer. However, no consensus has been achieved on the optimal parameters of IRE for prostate cancer. Since high voltage is known to carry risks of muscle contraction and patient discomfort, it is crucial to identify the minimum but effective and safer applied voltage to inhibit tumor growth. In this study, the effect of different applied voltages of IRE on prostate cancer was evaluated in BALB/c nude mice. Mathematical simulation and measurement of the actual ablation area revealed a larger ablation area at a higher voltage. In in vivo experiment, except for the three different voltages applied, all groups received identical electrical conditions: pulse number, 180 (20 groups × 9 pulses/group); pulse width, 100 µs; pulse interval, 2 ms; distance between the electrodes, 5 mm; and electrode exposure length, 15 mm. Whilst the tumor volume initially decreased in the 500 V (1000 V/cm) and 700 V (1400 V/cm) groups and subsequently increased, only a transient increase followed by a continuous decrease until the sacrifice was observed in the 900 V (1800 V/cm) group. This result demonstrated a lasting effect of a higher applied voltage on tumor growth inhibition. The histological, immunohistochemical, and western blot findings all confirmed IRE-induced apoptosis in the treatment groups. Taken together, 900 V seemed to be the minimum applied voltage required to reduce tumor growth, though subsequent studies are anticipated to further narrow the voltage intervals and lower the minimum voltage required for tumor inhibition.


Assuntos
Eletroporação , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Camundongos Nus , Eletroporação/métodos , Neoplasias da Próstata/terapia , Modelos Animais de Doenças , Simulação por Computador
19.
Sci Rep ; 12(1): 20290, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434004

RESUMO

Several investigations on the feasibility of stent placement into the Eustachian tube (ET) are being conducted. However, stents optimized for the anatomical structure of the ET have not yet been developed. In this study, the efficacy and safety of a self-expandable metallic stent (SEMS) optimized for porcine ET morphology was investigated. Silicone was injected into a cadaveric porcine ET to analyze the ET morphology. The three-dimensional-reconstructed porcine ET phantom images obtained after a computed tomography scan were measured to determine the dimensions of the porcine ET. The SEMS was designed as a tapered structure on the basis of the morphological findings of the porcine ET. The tapered SEMS (T-SEMS) and conventional SEMS (C-SEMS) were placed into the porcine ET to compare the safety and efficacy of the two types of SEMSs. Stent-induced tissue hyperplasia in the T-SEMS group was significantly lower than that in the C-SEMS group (p < 0.001). The T-SEMS optimized for the porcine ET was effective in maintaining stent patency. T-SEMS seems to be better than C-SEMS in suppressing stent-induced tissue hyperplasia, owing to the reduced stent-mediated mechanical injuries and maintaining ET patency.


Assuntos
Tuba Auditiva , Stents Metálicos Autoexpansíveis , Suínos , Animais , Tuba Auditiva/diagnóstico por imagem , Tuba Auditiva/cirurgia , Hiperplasia , Estudos Retrospectivos , Stents
20.
Sci Rep ; 12(1): 19135, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352051

RESUMO

Endoluminal radiofrequency (RF) ablation has been widely used as a safe and effective treatment for Barrett's esophagus. However, inadequate RF ablation may occur due to insufficient contact between the electrode and target tissues. Herein, a stent-based monopolar RF electrode (SE) was developed to evenly deliver RF energy to the inner wall of the rat esophagus. The optimal RF parameters were evaluated in the exposed rat esophagus. The temperature in the rat esophagus reached 70 â„ƒ in 89 s at 30 W, 59 s at 40 W, and 34 s at 50 W. The technical feasibility and efficacy of RF ablation using SE were evaluated based on changes in histological transformation and immunohistochemical parameters of tissues compared at immediately, 1 and 2 weeks after the procedure. The degrees of inflammatory cell infiltration, fibrotic changes, TUNEL, and HSP70 in the RF-ablated rat esophagus were significantly higher than compared with sham control (all p < 0.05). TUNEL-positive deposition gradually decreased, but HSP 70-positive deposition maintained a similar level for 2 weeks. The stent-based RF ablation was technically feasible and effective in evenly inducing thermal damages to the rat esophagus. The RF ablation system using the SE may represent a promising treatment for endoluminal malignancies.


Assuntos
Esôfago de Barrett , Ablação por Cateter , Ablação por Radiofrequência , Ratos , Humanos , Esôfago de Barrett/patologia , Ablação por Cateter/métodos , Eletrodos , Stents
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...